Segmentierung von Hirngefäßen und Blutflussanalyse in der 4D-Magnetresonanzangiographie bei zerebralen arteriovenösen Malformationen - Untersuchungen zu Hämodynamik und Gewebemarkern

Zur Planung einer invasiven Therapie für Patienten mit Gefäßfehlbildungen des Gehirns, sog. arteriovenöse Malformationen (Abk.: AVM), ist die Abschätzung des individuellen natürlichen Blutungsrisikos von entscheidender Bedeutung. Im Rahmen des Projektes wurden neue Methoden zur Segmentierung von AVMs in 3D-TOF-MRA-Bilddaten sowie zur Analyse des Blutflsuses in 4D-TREAT-MR-Bilddaten entwickelt und zur Auswertung im Rahmen von Studien in ein Softwaresystem namens AnToNIa (Abk. f.: Analysis Tool for Neuro Imaging Data) integriert.  Mithilfe der hier verfügbaren Bildanalyse- und Visualisierungsmethoden ist eine Quantifizierung und dreidimensionale Darstellung des Blutflusses bei AVM-Patienten in hoher räumlicher und zeitlicher Auflösung möglich (Abb. 1).


Abb. 1: Dynamische Darstellung des Bluteinflusses (a-i) auf einem hochaufgelösten 3D-Oberflächenmodell des zerebralen Gefäßsystems

Zur genauen Darstellung und Analyse der räumlichen Struktur des Gefäßsystems im Gehirn konnte durch das neue vierstufige Segmentierungsverfahren unter Einbeziehung von Form- und Intensitätsinformationen eine deutliche Verbesserung gegenüber etablierten Verfahren erreicht werden (Abb. 2). Für die zeitaufgelöste Magnetresonanzangiographie (TWIST/TREAT) wurde ein neues Verfahren der referenzbasierten Kurvenanpassung zur robusten Quantifizierung der Hämodynamik auf Basis von 4D-MRA-Bildsequenzen mit hoher Genauigkeit entwickelt. Im Rahmen einer Monte Carlo Simulation konnte gezeigt werden, dass die Präzision des neuen Verfahrens gegenüber den etablierten Verfahren um 59% gesteigert und dabei die Laufzeit um 33% reduziert werden konnten. Ein weiterer wesentlicher Vorteil des neuen Verfahrens ist die implizite Berücksichtigung der individuellen physiologischen Charakteristika durch die Verwendung einer Referenzkurve.


Abb. 2: 3D-Oberflächenmodell eines zerebralen Gefäßsystems von einem Patienten mit diagnostizierter AVM.


Abb. 3: Farbcodierte Darstellung der extrahierten Werte der Bolus Arrivial Time (BAT) auf einem 3D-Oberflächenmodell (links) und in einer 3D-TOF-MRA-Schicht (rechts). Anhand der BAT-Werte wird erkennbar, welche Gefäße zuerst und welche später durchflossen werden.

Insgesamt wurden innerhalb des Projektes mehr als 50 Patienten mit der TWIST/TREAT untersucht und die Daten mittels der hier der entwickelten Software analysiert. Zunächst wurde der Zusammenhang zwischen den makrovaskulären Fluss und der mikrovaskulären Perfusion um den Nidus herum untersucht. Die Ergebnisse dieser Untersuchung sprechen für zwei Ebenen der Perfusionsbeeinträchtigung: eine makrovaskulär-territoriale und eine mikrovaskulär-lokale Ebene. Darüber hinaus wurde untersucht, ob sich AVMs mit hohem und niedrigem Blutungsrisiko hinsichtlich ihrer hämodynamischen Parameter unterscheiden. Hierbei zeigte sich statistisch robust, dass hohe arterielle Einflussgeschwindigkeiten einen Risikofaktor für eine AVM-Blutung darstellen. Das visuelle Rating und der Vergleich mit der konventionellen Angiographie sind abgeschlossen. Hierbei zeigte sich, dass die dreidimensionale flusskodierte Sichtweise auf die Daten erhebliche Vorteile bietet. Es wurden drei intranidale Flussmuster identifiziert: homogen, uni¬direktional und heterogen.

Die im Rahmen des Forschungsprojektes entwickelten Verfahren und deren Implementierung in ein benutzerfreundliches Auswertetool bilden zudem die Grundlage für diverse weitere Forschungsarbeiten, insbesondere auf dem Gebiet der Hirngefäßaneurysmen.

Das Projekt wird von der Deutschen Forschungsgemeinschaft gefördert (Ha2355/10-1).

Ausgewählte Publikationen

  1. Forkert N.D.,  Illies T., Goebell E., Fiehler J., Säring D., Handels H.,
    Computer-aided Nidus Segmentation and Angiographic Characterization of Arteriovenous Malformations,
    International Journal of Computer Assisted Radiology and Surgery, 8, 775-786, 2013
  2. Forkert N., Schmidt-Richberg A., Fiehler J., Illies T., Möller D., Säring D., Handels H., Ehrhardt J.,
    3D Cerebrovascular Segmentation combining Fuzzy Vessel Enhancement and Level-sets with Anisotropic Energy Weights,
    Magnetic Resonance Imaging, 31, 2, 262-271, 2013
  3. Forkert N., Fiehler J., Illies T., Möller D., Handels H., Säring D.,
    4D Blood Flow Visualization Fusing 3D and 4D MRA Image Sequences,
    Journal of Magnetic Resonance Imaging, 36, 2, 443-53, 2012
  4. Forkert N., Illies T., Möller D., Handels H., Säring D., Fiehler J.,
    Analysis of the Influence of 4D MRA Temporal Resolution on Time-to-Peak Estimation Accuracy for Different Cerebral Vessel Structures,
    American Journal of Neuroradiology, 33(11), 2103-2109, 2012
  5. Forkert N., Fiehler J., Schönfeld M., Sedlacik J., Regelsberger J., Handels H., Illies T.,
    Intranidal Signal Distribution in Post-contrast Time-of-Flight MRA is Associated with Rupture Risk Factors in Arteriovenous Malformations,
    Clinical Neuroradiology, Epub ahead of print, Aug. 2012, Doi 10.1007/s00062-012-0168-8
  6. Forkert N., Kaesemann P., Treszl A., Siemonson S., Cheng B., Handels H., Fiehler J., Thomalla G.,
    Comparison of 10 TTP and Tmax Estimation Techniques for MR Perfusion-Diffusion Mismatch Quantification,
    American Journal of Neuroradiology, 34, 1697-1703, 2012
  7. Forkert N., Schmidt-Richberg A., Fiehler J., Illies T., Möller D., Handels H., Säring D.,
    Automatic Correction of Gaps in Cerebrovascular Segmentations Extracted from 3D Time-of-Flight MRA Datasets,
    Methods of Information in Medicine, 5, 415-422, 2012
  8. Forkert N. Schmidt-Richberg A., Fiehler J., Illies T., Möller D., Handels H., Säring D.,
    Fuzzy-based Vascular Structure Enhancement in Time-of-Flight MRA Images for Improved Cerebrovascular Segmentation,
    Methods of Information in Medicine, 50, 1, 74-83, 2011
  9. Forkert N., Säring D., Handels H.,
    Automatic Analysis of the Anatomy of Arteriovenous Malformations  using 3D and 4D MRA Image Sequences,
    MedInfo 2010, Kapstadt, South Africa, Studies in Health Technology and Informatics, 160, 1268-72, 2010
  10. Forkert N., Säring D., Fiehler J., Illies T., Möller D., Handels H.,
    Automatic Brain Segmentation in Time-of-Flight MRA Images,
    Methods of Information in Medicine, 48, 5, 399-407, 2009
  11. Dennis Säring, Jens Fiehler, Nils Forkert, Merle Piening, Heinz Handels
    Visualization and Analysis of Cerebral Arteriovenous Malformation Combining 3D and 4D MR Image Sequences,
    International Journal of Computer Assisted Radiology and Surgery, 2, 75-79, 2007

Projektteam

Dipl.-Inf. Nils Folkert (Institut für Medizinische Informatik, UKE Hamburg)
Dr. Dennis Säring (Institut für Medizinische Informatik, UKE Hamburg)
Prof. Dr. Heinz Handels

Kooperationspartner

Prof. Dr. med. Jens Fiehler
Dr. med. Till Illies
Klinik für Neuroradiologische Diagnostik und Intervention, UKE

 

4D-Magentresonanz-icon.jpg
Erstellt am 16. Juli 2014 - 13:37.

Probabilistische statistische Form- und Appearance-Modelle zur robusten Multi-Objekt-Segmentierung in medizinischen Bilddaten

Das Ziel dieses Projektes ist die Entwicklung von modellbasierten Methoden zur automatischen 3D-Segmentierung von multiplen anatomischen Objekten in medizinischen Bildfolgen, die neue Möglichkeiten  in der quantitativen Radiologie, der Strahlentherapie und Operationsplanung eröffnen. Im Rahmen des DFG-Projektes sollen die im Vorläuferprojekt entwickelten statistischen Formmodelle mit probabilistischen Punktkorrespondenzen weiterentwickelt werden, so dass neben Forminformationen über die Organe auch Vorwissen über die lokale Erscheinung (Appearance) der Objekte sowie die globalen räumlichen Nachbarschaftsbeziehungen von Organen in einem erweiterten Statistischen Form- und Appearance-Modell erfasst werden. Durch Integration probabilistischer Form- und Erscheinungsmodelle in einen erweiterten Levelset-Segmentierungsansatz soll die robuste und flexible Multi-Objekt-Segmentierung von Organ-Ensembles in 3D-Bildfolgen ermöglicht werden.

Das Projekt wird durch die Deutsche Forschungsgemeinschaft gefördert (DFG: HA 2355/7-2).

Ausgewählte Publikationen:

  1. Hufnagel H., Ehrhardt J., Pennec X., Ayache N., Handels H., Coupled Level Set Segmentation Using a Point-Based Statistical Shape Model Relying on Correspondence Probabilities, In: Dawant B. M., Haynor D.R. (eds.), Image Processing, SPIE Medical Imaging 2010, Orlando, Vol. 7623, 1B1-1B8, 2010
  2. Hufnagel H., Ehrhardt J., Pennec X., Ayache N., Handels H.,  Computation of a Probabilistic Statistical Shape Model in a Maximum-a-posteriori Framework, Methods of Information in Medicine,  48, 4, 314-319, 2009
  3. Hufnagel H., Ehrhardt J., Pennec X., Ayache N., Handels H., Level Set Segmentation Using a Point-Based Statistical Shape Model Relying on Correspondence Probabilities, Workshop Probabilistic Models for Medical Image Analysis, PMMIA 09, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2009, London, United Kingdom, 34-44, 2009
  4. Hufnagel H., Pennec X., Ehrhardt J., Ayache N., Handels H., Generation of Statistical Shape Models with Probabilistic Point Correspondences and Expectation Maximization – Iterative Closest Point Algorithm, International Journal of Computer Assisted Radiology and Surgery, 2, 5, 265-273, 2008

Projektteam:

M.Sc. Julia Krüger
Dr. Jan Ehrhardt
Prof. Dr. Heinz Handels

frommod80.png
Erstellt am 9. November 2012 - 14:30 von Wrage. Zuletzt geändert am 4. Juli 2014 - 13:36.

Integrierte 4D-Segmentierung und Registrierung räumlich-zeitlicher Bilddaten

Die Einführung tomographischer 4D-Bilddaten hat die räumlich-zeitliche Er­fas­sung dynamischer physiologischer Prozesse wie der Herz- oder Lungen­bewegung er­möglicht, jedoch steht die Ausnutzung ihres Potenzials in Diagnostik und Therapie erst am Anfang. Für eine umfassende diagnostische und therapeutische Nutzung der räumlich-zeitlichen Bildinformationen in den 4D-Daten ist einerseits eine Abgrenzung der relevanten Strukturen in den Bilddaten (Segmentierung) und andererseits die ex­pli­zite Modellierung der abgebildeten Bewegungsabläufe (Registrierung) notwendig. Klassische Ansätze versuchen beide Probleme unabhängig voneinander zu lösen. Registrierung und Segmentierung hängen jedoch wechselseitig voneinander ab.

Ziel des Projektes ist die Entwicklung von Methoden zur simultanen Seg­mentierung und Bewegungsschätzung in räumlich-zeitlichen Bilddaten, durch die die wechselseitige Abhängigkeit der Segmentierung und Registrierung voneinander berücksichtigt wird. Durch ge­eig­nete Nebenbedingungen wird verfügbares physiologisches Vorwissen über die Dy­namik der Bewegung in diesen Ansatz  integriert. Die Bereitstellung von Methoden zur automatischen Bestimmung geeigneter Verfahrensparameter soll die flexi­ble An­pas­sung des entwickelten Seg­mentierungs-/Registrierungsmodells an kon­krete medi­zi­ni­sche Pro­blem­stel­lun­gen ermöglichen. Spezielle Interaktionsmechanismen erlauben die be­nutzer­ge­steuerte Anpas­sung des Segmentierungs- bzw. Registrie­rungs­­er­geb­nisses.

Die Grundidee der hier verfolgten Ansätze wird nachfolgend beispielhaft illustriert (siehe Abbildung). Betrachtet werden zwei 3D-Bilder einer zeitlichen Sequenz (Referenz- und Target-Bild genannt), wobei eine Segmentierung des Referenzbildes als bekannt vorausgesetzt wird. Berechnet wird nun zum einen eine Bewegungsschätzung, resp. Registrierung von Referenz- und Target-Bild, zum anderen eine Segmentierung des Target-Bildes. Ein zusätzlich definierter Kraftterm  koppelt dabei die beiden Verfahren, indem eine möglichst hohe Übereinstimmung der Target-Segmentierung und der mit der Bewegungsschätzung transformierten Referenzsegmentierung gefordert wird.

Die entwickelten Methoden werden zur simultanen Segmentierung und Bewegungs­feld­schätzung der Lunge und der Leber eingesetzt und anhand klinischer 4D-CT-Bilddaten evaluiert.

Das Projekt wird von der Deutschen Forschungsgemeinschaft gefördert (DFG:  EH 224/3-1).

Ausgewählte Publikationen:

  1. A. Schmidt-Richberg, H. Handels, J. Ehrhardt:
    Integrated Segmentation and Non-linear Registration for Organ Segmentation and Motion Field Estimation in 4D CT Data.
    Methods Inf Med, 48(4): 334–339, Jan 2009.
  2. A. Schmidt-Richberg, J. Ehrhardt, R. Werner, H. Handels
    Direction-Dependent Regularization for Improved Estimation of Liver and Lung Motion in 4D Image Data.
    In: SPIE Medical Imaging 2010, San Diego, USA, Vol. 7623, 76232Y, 2010.
  3. A. Schmidt-Richberg, J. Ehrhardt, R. Werner, H. Handels
    Slipping Objects in Image Registration: Improved Motion Field Estimation with Direction-dependent Regularization.
    In: G.-Z. Yang et al. (eds.): Medical Image Computing and Computer-Assisted Intervention - MICCAI 2009, London, LNCS Vol. 5761, 755–762, 2009.
  4. J. Ehrhardt, A. Schmidt-Richberg, H. Handels
    Simultaneous Segmentation and Motion Estimation in 4D-CT Data Using a Variational Approach.
    In: J.M. Reinhardt et al. (eds.): Image Processing, SPIE Medical Imaging 2008, San Diego, Vol. 6914, 37-1–37-10, 2008.
  5. J. Ehrhardt, A. Schmidt-Richberg, H. Handels
    A Variational Approach for Combined Segmentation and Estimation of Respiratory Motion in Temporal Image Sequences.
    IEEE International Conference on Computer Vision 2007, ICCV 2007, Rio de Janeiro, Brazil, CD-ROM-Proceedings, IEEE Catalog Number CFP07198-CDR (ISBN 978-1-4244-1631-8), 2007. 

Projektteam:

Dipl.-Inf. Alexander Schmidt-Richberg
Dr. Jan Ehrhardt
Prof. Dr. Heinz Handels

 

IconIntegr4DSegmentierung.png
Erstellt am 1. Juni 2010 - 18:02. Zuletzt geändert am 26. Juni 2014 - 16:44.

Erweiterte statistische Formmodelle mit probabilistischen Punktkorrespondenzen zur wissensbasierten 3D-Segmentierung medizinischer Bildobjekte

Das Ziel dieses Projektes ist die Entwicklung von modell- und wissensbasierten Methoden zur Formanalyse sowie zur automatischen 3D-Segmentierung diagnostisch und therapeutisch relevanter Bildobjekte in räumlichen Bildern. Die Einbeziehung von Vorwissen über die Form und den Kontext zu segmentierender Bildstrukturen ermöglicht eine robustere Segmentierung von solchen Strukturen, die unscharfe Kanten oder inhomogene Intensitäten aufweisen.

Durch den hier verfolgten probabilistischen Modellierungsansatz soll die Möglichkeit zur Repräsentation der natürlichen 3D-Formvariabilität medizinischer Bildstrukturen in statistischen Formmodellen deutlich erhöht und eine optimierte Ausnutzung der Forminformationen auch bei kleinen Trainingsmengen ermöglicht werden. Das probabilistische Modell soll in einen flexiblen Segmentierungsalgorithmus integriert werden, der auch für komplexe Segmentierungsprobleme wie Organe mit nichtsphärischer Topologie bzw. Multi-Objekt-Segmentierung anwendbar ist. Die neuen Methoden werden an klinisch relevanten Segmentierungsproblemen aus dem Bereich der Strahlentherapie und der computergestützten Operationsplanung evaluiert.

Probabilistisches Statistisches Formmodell der Niere. (a) zeigt die mittlere Form. (b-e) zeigen die Formvariationen entlang des ersten (b,c) und entlang des zweiten (d,e) Variationsmodes.

Das Projekt wird durch die Deutsche Forschungsgemeinschaft gefördert (DFG: HA 2355/7-1).

Ausgewählte Publikationen:

  1. Hufnagel, H., Pennec, X., Ehrhardt, J., Handels, H. and Ayache, N. (2007). Shape Analysis Using a Point-Based Statistical Shape Model Built on Correspondence Probabilities. Proceedings of the MICCAI'07: 959-967.
  2. Hufnagel, H., Pennec, X., Ehrhardt, J., Ayache, N. and Handels, H. (2008). "Generation of a Statistical Shape Model with Probabilistic Point Correspondences and EM-ICP." International Journal for Computer Assisted Radiology and Surgery (IJCARS) 2(5): 265-273.
  3. Hufnagel, H., Ehrhardt, J., Pennec, X., Ayache, N. and Handels, H. (2009a). "Computing of Probabilistic Statistical Shape Models of Organs Optimizing a Global Criterion." Methods of Information in Medicine 48(4): 314-319.
  4. Hufnagel, H., Ehrhardt, J., Pennec, X., Schmidt-Richberg, A. and Handels, H. (2009b). Level Set Segmentation Using a Point-Based Statistical Shape Model Relying on Correspondence Probabilities. Proc. of MICCAI Workshop Probabilistic Models for Medical Image Analysis (PMMIA'09): 34-44.
  5. Hufnagel, H., Ehrhardt, J., Pennec, X. and Handels, H. (2009c). Application of a Probabilistic Statistical Shape Model to Automatic Segmentation. World Congress on Medical Physics and Biomedical Engineering, WC 2009, München: 2181-2184.
  6. Hufnagel, H., Ehrhardt, J., Pennec, X., Schmidt-Richberg, A. and Handels, H. (2010a). Coupled Level Set Segmentation Using a Point-Based Statistical Shape Model Relying on Correspondence Probabilities. Proc. SPIE Symposium on Medical Imaging 2010: 6914 6914T6911-6914T6918.

Projektteam:

Dipl.- Inf. Heike Hufnagel
Dr. Jan Ehrhardt
Prof. Dr. Heinz Handels

Kooperationspartner:

Prof. Dr. Nicholas Ayache
Dr. Xavier Pennec
INRIA, Institut National de Recherche en Informatique et en Automatique, Epidaure Group, Sophia Antipolis Cedex, Frankreich

 

Stat_Form_ICON-80.jpg
Erstellt am 11. Mai 2010 - 16:44 von Hufnagel. Zuletzt geändert am 4. Juli 2014 - 13:36.

Anschrift

Institutssekretariat
Susanne Petersen

Tel+49 451 3101 5601
Fax+49 451 3101 5604


Gebäude 64 (Informatik)

Ratzeburger Allee 160
23538 Lübeck
Deutschland