Technical Note: Development of a Tidal Volume Surrogate that Replaces Spirometry for Physiological Breathing Monitoring in 4D CT

TitelTechnical Note: Development of a Tidal Volume Surrogate that Replaces Spirometry for Physiological Breathing Monitoring in 4D CT
Publication TypeJournal Article
Year of Publication2010
AuthorsWerner R., White B., Handels H., Lu W., Low D.A.
JournalMedical physics
Volume37
Issue2
Pages615-9
Date Published2010 Feb
Publication Languageeng
ISSN0094-2405
SchlüsselwörterAlgorithms, Humans, Imaging, Three-Dimensional, Lung, Radiographic Image Enhancement, Radiographic Image Interpretation, Computer-Assisted, Reproducibility of Results, Respiratory Function Tests, Respiratory Mechanics, Respiratory-Gated Imaging Techniques, Sensitivity and Specificity, Spirometry, Tidal Volume, Tomography, X-Ray Computed
Abstract

PURPOSE: Spirometry exhibits baseline drift and frequent measurement errors so it cannot be used by itself to provide tidal volume-based image sorting or breathing motion modeling. Other breathing surrogates, in this study an abdominal bellows system, are drift free but do not measure tidal volume. Simultaneously using spirometry and the bellows system allows the user to convert the recorded bellows signal to tidal volume but still relies on spirometry measurements. The authors therefore propose to use CT-based air content, rather than a spirometer, to convert the bellows signal to tidal volume.

METHODS: 41 4D CT data sets are acquired, while the breathing cycle is simultaneously measured using spirometry and an abdominal pressure bellows system. The assumptions underlying the conversion of the bellows measurement to tidal volume by CT-based air content are analyzed. This comprises of detailed correlation studies of the spirometry-measured tidal volume, the bellows signal, and CT-based air content.

RESULTS: For 15/41 patients, the spirometry signals are not consistently acquired during the 4D CT session, so correlating spirometry to bellows measurements and CT-based air content leads to erroneous conversion coefficients. After introducing a minimum correlation threshold to remove these data, good correlations are obtained between the remaining breathing signals. The ratio of CT-based air content to tidal volume is measured to be 1.11 +/- 0.08; the expected value is 1.11 because room air is 11% more dense than air in the lungs.

CONCLUSIONS: The observed problems of spirometry recording illustrate the challenges encountered when using spirometers as breathing surrogate for 4D CT acquisition. The high correlation between spirometry and bellows breathing signals and the verified factor of 1.11 between CT-based air content and tidal volume mean that the bellows measurement (or other equivalent surrogates) can be reliably converted to tidal volume using the CT-based air content, avoiding the need for a spirometer.

PubMed Link

http://www.ncbi.nlm.nih.gov/pubmed/20229870?dopt=Abstract

Alternate JournalMed Phys
Erstellt am 30. Juli 2012 - 11:56. Zuletzt geändert am 1. April 2014 - 11:25 von Kulbe.

Anschrift

Institutssekretariat
Susanne Petersen

Tel+49 451 3101 5601
Fax+49 451 3101 5604


Gebäude 64 (Informatik)

Ratzeburger Allee 160
23538 Lübeck
Deutschland