Segmentierung von Hirngefäßen und Blutflussanalyse in der 4D-Magnetresonanzangiographie bei zerebralen arteriovenösen Malformationen - Untersuchungen zu Hämodynamik und Gewebemarkern

Zur Planung einer invasiven Therapie für Patienten mit Gefäßfehlbildungen des Gehirns, sog. arteriovenöse Malformationen (Abk.: AVM), ist die Abschätzung des individuellen natürlichen Blutungsrisikos von entscheidender Bedeutung. Im Rahmen des Projektes wurden neue Methoden zur Segmentierung von AVMs in 3D-TOF-MRA-Bilddaten sowie zur Analyse des Blutflsuses in 4D-TREAT-MR-Bilddaten entwickelt und zur Auswertung im Rahmen von Studien in ein Softwaresystem namens AnToNIa (Abk. f.: Analysis Tool for Neuro Imaging Data) integriert.  Mithilfe der hier verfügbaren Bildanalyse- und Visualisierungsmethoden ist eine Quantifizierung und dreidimensionale Darstellung des Blutflusses bei AVM-Patienten in hoher räumlicher und zeitlicher Auflösung möglich (Abb. 1).


Abb. 1: Dynamische Darstellung des Bluteinflusses (a-i) auf einem hochaufgelösten 3D-Oberflächenmodell des zerebralen Gefäßsystems

Zur genauen Darstellung und Analyse der räumlichen Struktur des Gefäßsystems im Gehirn konnte durch das neue vierstufige Segmentierungsverfahren unter Einbeziehung von Form- und Intensitätsinformationen eine deutliche Verbesserung gegenüber etablierten Verfahren erreicht werden (Abb. 2). Für die zeitaufgelöste Magnetresonanzangiographie (TWIST/TREAT) wurde ein neues Verfahren der referenzbasierten Kurvenanpassung zur robusten Quantifizierung der Hämodynamik auf Basis von 4D-MRA-Bildsequenzen mit hoher Genauigkeit entwickelt. Im Rahmen einer Monte Carlo Simulation konnte gezeigt werden, dass die Präzision des neuen Verfahrens gegenüber den etablierten Verfahren um 59% gesteigert und dabei die Laufzeit um 33% reduziert werden konnten. Ein weiterer wesentlicher Vorteil des neuen Verfahrens ist die implizite Berücksichtigung der individuellen physiologischen Charakteristika durch die Verwendung einer Referenzkurve.


Abb. 2: 3D-Oberflächenmodell eines zerebralen Gefäßsystems von einem Patienten mit diagnostizierter AVM.


Abb. 3: Farbcodierte Darstellung der extrahierten Werte der Bolus Arrivial Time (BAT) auf einem 3D-Oberflächenmodell (links) und in einer 3D-TOF-MRA-Schicht (rechts). Anhand der BAT-Werte wird erkennbar, welche Gefäße zuerst und welche später durchflossen werden.

Insgesamt wurden innerhalb des Projektes mehr als 50 Patienten mit der TWIST/TREAT untersucht und die Daten mittels der hier der entwickelten Software analysiert. Zunächst wurde der Zusammenhang zwischen den makrovaskulären Fluss und der mikrovaskulären Perfusion um den Nidus herum untersucht. Die Ergebnisse dieser Untersuchung sprechen für zwei Ebenen der Perfusionsbeeinträchtigung: eine makrovaskulär-territoriale und eine mikrovaskulär-lokale Ebene. Darüber hinaus wurde untersucht, ob sich AVMs mit hohem und niedrigem Blutungsrisiko hinsichtlich ihrer hämodynamischen Parameter unterscheiden. Hierbei zeigte sich statistisch robust, dass hohe arterielle Einflussgeschwindigkeiten einen Risikofaktor für eine AVM-Blutung darstellen. Das visuelle Rating und der Vergleich mit der konventionellen Angiographie sind abgeschlossen. Hierbei zeigte sich, dass die dreidimensionale flusskodierte Sichtweise auf die Daten erhebliche Vorteile bietet. Es wurden drei intranidale Flussmuster identifiziert: homogen, uni¬direktional und heterogen.

Die im Rahmen des Forschungsprojektes entwickelten Verfahren und deren Implementierung in ein benutzerfreundliches Auswertetool bilden zudem die Grundlage für diverse weitere Forschungsarbeiten, insbesondere auf dem Gebiet der Hirngefäßaneurysmen.

Das Projekt wird von der Deutschen Forschungsgemeinschaft gefördert (Ha2355/10-1).

Ausgewählte Publikationen

  1. Forkert N.D.,  Illies T., Goebell E., Fiehler J., Säring D., Handels H.,
    Computer-aided Nidus Segmentation and Angiographic Characterization of Arteriovenous Malformations,
    International Journal of Computer Assisted Radiology and Surgery, 8, 775-786, 2013
  2. Forkert N., Schmidt-Richberg A., Fiehler J., Illies T., Möller D., Säring D., Handels H., Ehrhardt J.,
    3D Cerebrovascular Segmentation combining Fuzzy Vessel Enhancement and Level-sets with Anisotropic Energy Weights,
    Magnetic Resonance Imaging, 31, 2, 262-271, 2013
  3. Forkert N., Fiehler J., Illies T., Möller D., Handels H., Säring D.,
    4D Blood Flow Visualization Fusing 3D and 4D MRA Image Sequences,
    Journal of Magnetic Resonance Imaging, 36, 2, 443-53, 2012
  4. Forkert N., Illies T., Möller D., Handels H., Säring D., Fiehler J.,
    Analysis of the Influence of 4D MRA Temporal Resolution on Time-to-Peak Estimation Accuracy for Different Cerebral Vessel Structures,
    American Journal of Neuroradiology, 33(11), 2103-2109, 2012
  5. Forkert N., Fiehler J., Schönfeld M., Sedlacik J., Regelsberger J., Handels H., Illies T.,
    Intranidal Signal Distribution in Post-contrast Time-of-Flight MRA is Associated with Rupture Risk Factors in Arteriovenous Malformations,
    Clinical Neuroradiology, Epub ahead of print, Aug. 2012, Doi 10.1007/s00062-012-0168-8
  6. Forkert N., Kaesemann P., Treszl A., Siemonson S., Cheng B., Handels H., Fiehler J., Thomalla G.,
    Comparison of 10 TTP and Tmax Estimation Techniques for MR Perfusion-Diffusion Mismatch Quantification,
    American Journal of Neuroradiology, 34, 1697-1703, 2012
  7. Forkert N., Schmidt-Richberg A., Fiehler J., Illies T., Möller D., Handels H., Säring D.,
    Automatic Correction of Gaps in Cerebrovascular Segmentations Extracted from 3D Time-of-Flight MRA Datasets,
    Methods of Information in Medicine, 5, 415-422, 2012
  8. Forkert N. Schmidt-Richberg A., Fiehler J., Illies T., Möller D., Handels H., Säring D.,
    Fuzzy-based Vascular Structure Enhancement in Time-of-Flight MRA Images for Improved Cerebrovascular Segmentation,
    Methods of Information in Medicine, 50, 1, 74-83, 2011
  9. Forkert N., Säring D., Handels H.,
    Automatic Analysis of the Anatomy of Arteriovenous Malformations  using 3D and 4D MRA Image Sequences,
    MedInfo 2010, Kapstadt, South Africa, Studies in Health Technology and Informatics, 160, 1268-72, 2010
  10. Forkert N., Säring D., Fiehler J., Illies T., Möller D., Handels H.,
    Automatic Brain Segmentation in Time-of-Flight MRA Images,
    Methods of Information in Medicine, 48, 5, 399-407, 2009
  11. Dennis Säring, Jens Fiehler, Nils Forkert, Merle Piening, Heinz Handels
    Visualization and Analysis of Cerebral Arteriovenous Malformation Combining 3D and 4D MR Image Sequences,
    International Journal of Computer Assisted Radiology and Surgery, 2, 75-79, 2007

Projektteam

Dipl.-Inf. Nils Folkert (Institut für Medizinische Informatik, UKE Hamburg)
Dr. Dennis Säring (Institut für Medizinische Informatik, UKE Hamburg)
Prof. Dr. Heinz Handels

Kooperationspartner

Prof. Dr. med. Jens Fiehler
Dr. med. Till Illies
Klinik für Neuroradiologische Diagnostik und Intervention, UKE

 

4D-Magentresonanz-icon.jpg
Created at July 16, 2014 - 1:37pm.

Probabilistic Statistical Shape and Appearance Models for Robust Multi-Object Segmentation in Medical Image Data

The objective of the project is to develop a model based method for automatic 3D segmentation of multiple anatomic objects in medical image volumes. The knowledge based segmentation of organs will open up new possibilities in the quantitative radiology, radiation therapy and operation planning. The main focus of this DFG project is the improvement and extension of the statistical shape models with probabilistic point correspondences that had been developed in a previous project by our research group. The probabilistic statistical shape model that already holds the information about the shape of an organ will be extended to a probabilistic shape and appearance model that additionally contains knowledge about the local appearance of organs and the global neighborhood relations between them. Furthermore the probabilistic shape and appearance models will be integrated in an advanced level set segmentation approach to enable a robust and flexible multi-object segmentation of organ ensembles in 3D image volumes.

This projekt is supported by the German Research Foundation (DFG: HA 2355/7-2).

Publications:

  1. Hufnagel H., Ehrhardt J., Pennec X., Ayache N., Handels H., Coupled Level Set Segmentation Using a Point-Based Statistical Shape Model Relying on Correspondence Probabilities, In: Dawant B. M., Haynor D.R. (eds.), Image Processing, SPIE Medical Imaging 2010, Orlando, Vol. 7623, 1B1-1B8, 2010
  2. Hufnagel H., Ehrhardt J., Pennec X., Ayache N., Handels H.,  Computation of a Probabilistic Statistical Shape Model in a Maximum-a-posteriori Framework, Methods of Information in Medicine,  48, 4, 314-319, 2009
  3. Hufnagel H., Ehrhardt J., Pennec X., Ayache N., Handels H., Level Set Segmentation Using a Point-Based Statistical Shape Model Relying on Correspondence Probabilities, Workshop Probabilistic Models for Medical Image Analysis, PMMIA 09, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2009, London, United Kingdom, 34-44, 2009
  4. Hufnagel H., Pennec X., Ehrhardt J., Ayache N., Handels H., Generation of Statistical Shape Models with Probabilistic Point Correspondences and Expectation Maximization – Iterative Closest Point Algorithm, International Journal of Computer Assisted Radiology and Surgery, 2, 5, 265-273, 2008

Project team:

M.Sc. Julia Krüger
Dr. Jan Ehrhardt
Prof. Dr. Heinz Handels

frommod80.png
Created at November 22, 2012 - 3:54pm. Last modified at June 30, 2014 - 11:43am.

Extended statistical shape models based on probabilistic correspondences for 3D segmentation of medical images

The objective of this project is the development of model- and knowledge-based methods for shape analysis as well as automatic 3D-segmentation of diagnostically and therapeutically relevant objects in medical image volumes. The incorporation of a priori knowledge about the shape and the context of image structures allows a more robust segmentation of structures that feature weak edges or inhomogeneous intensities.

The probabilistic approach developed here is aimed to augment the possibilities of representing the natural 3D shape variability of anatomical structures in statistical shape models and to allow an optimal exploitation of shape information even in training data containing few observations. The idea is to integrate the probabilistic model into a flexible segmentation algorithm that should be able to deal with complex segmentation problems as non-spherical topologies or multi-object segmentation.

The new methods are evaluated on clinically relevant segmentation problems in the fields of radiation therapy and computer-aided intervention planning.

Probabilistic statistical shape model of the kidney. (a) shows the mean shape. (b-e) show the shape variations according to the first (b,c) and second (d,e) variation mode.

The project is funded by Deutsche Forschungsgemeinschaft (DFG: HA 2355/7-1).

Selected Publications:

  1. Hufnagel, H., Pennec, X., Ehrhardt, J., Handels, H. and Ayache, N. (2007). Shape Analysis Using a Point-Based Statistical Shape Model Built on Correspondence Probabilities. Proceedings of the MICCAI'07: 959-967.
  2. Hufnagel, H., Pennec, X., Ehrhardt, J., Ayache, N. and Handels, H. (2008). "Generation of a Statistical Shape Model with Probabilistic Point Correspondences and EM-ICP." International Journal for Computer Assisted Radiology and Surgery (IJCARS) 2(5): 265-273.
  3. Hufnagel, H., Ehrhardt, J., Pennec, X., Ayache, N. and Handels, H. (2009a). "Computing of Probabilistic Statistical Shape Models of Organs Optimizing a Global Criterion." Methods of Information in Medicine 48(4): 314-319.
  4. Hufnagel, H., Ehrhardt, J., Pennec, X., Schmidt-Richberg, A. and Handels, H. (2009b). Level Set Segmentation Using a Point-Based Statistical Shape Model Relying on Correspondence Probabilities. Proc. of MICCAI Workshop Probabilistic Models for Medical Image Analysis (PMMIA'09): 34-44.
  5. Hufnagel, H., Ehrhardt, J., Pennec, X. and Handels, H. (2009c). Application of a Probabilistic Statistical Shape Model to Automatic Segmentation. World Congress on Medical Physics and Biomedical Engineering, WC 2009, München: 2181-2184.
  6. Hufnagel, H., Ehrhardt, J., Pennec, X., Schmidt-Richberg, A. and Handels, H. (2010a). Coupled Level Set Segmentation Using a Point-Based Statistical Shape Model Relying on Correspondence Probabilities. Proc. SPIE Symposium on Medical Imaging 2010: 6914 6914T6911-6914T6918.

Project Team:

Dipl.- Inf. Heike Hufnagel
Dr. Jan Ehrhardt
Prof. Dr. Heinz Handels

Cooperation Partners:

Prof. Dr. Nicholas Ayache
Dr. Xavier Pennec
INRIA, Institut National de Recherche en Informatique et en Automatique, Epidaure Group, Sophia Antipolis Cedex, Frankreich

 

Stat_Form_ICON-80.jpg
Created at September 13, 2010 - 11:37am. Last modified at June 30, 2014 - 11:43am.

Integrated 4D Segmentation and Registration of Spatio-temporal Image Data

The introduction of spatio-temporal tomographic image data enabled the analysis of dynamic physiological processes like heart beat or respiratory lung motion. However, its potential is not yet fully capitalized on. A comprehensive diagnostic and therapeutic usage of 4D data requires on the one hand a delineation of clinically relevant structures (segmentation), on the other hand an explicit description of motion characteristics (registration). Classical approaches regard both problems independently, however, a mutual dependency between them exists.

Aim of this project is the development of simultaneous segmentation and registration approaches that allow for a modeling of the mutual dependency. A-priory knowledge about physiology and motion dynamic is introduced by formulating appropriate side conditions. Methods for an automatic parameter detection and refinement allow for an adaption of the proposed segmentation and registration algorithm to specific medical applications. Moreover, the introduction of interaction tools enables the user-driven correction and improvement of results.

The base idea of the approach is illustrated in the figure below. Looking at two 3D images of a spatio-temporal data set (called reference and target image), a given segmentation of the reference image is assumed. Aim is on the one hand the calculation of a segmentation of the target image, on the other hand the motion estimation between target and reference image. An additional term ensures the consistency of segmentation and registration by comparing target and transformed reference segmentation.

The approaches developed in this project are evaluated for the simultaneous segmentation and motion estimation of lung and liver on the base of clinical CT data.

The project is funded by Deutsche Forschungsgemeinschaft (DFG: EH 224/3-1).

Selected Publications:

  1. A. Schmidt-Richberg, H. Handels, J. Ehrhardt:
    Integrated Segmentation and Non-linear Registration for Organ Segmentation and Motion Field Estimation in 4D CT Data.
    Methods Inf Med, 48(4): 334–339, Jan 2009.
  2. A. Schmidt-Richberg, J. Ehrhardt, R. Werner, H. Handels
    Direction-Dependent Regularization for Improved Estimation of Liver and Lung Motion in 4D Image Data.
    In: SPIE Medical Imaging 2010, San Diego, USA, Vol. 7623, 76232Y, 2010.
  3. A. Schmidt-Richberg, J. Ehrhardt, R. Werner, H. Handels
    Slipping Objects in Image Registration: Improved Motion Field Estimation with Direction-dependent Regularization.
    In: G.-Z. Yang et al. (eds.): Medical Image Computing and Computer-Assisted Intervention - MICCAI 2009, London, LNCS Vol. 5761, 755–762, 2009.
  4. J. Ehrhardt, A. Schmidt-Richberg, H. Handels
    Simultaneous Segmentation and Motion Estimation in 4D-CT Data Using a Variational Approach.
    In: J.M. Reinhardt et al. (eds.): Image Processing, SPIE Medical Imaging 2008, San Diego, Vol. 6914, 37-1–37-10, 2008.
  5. J. Ehrhardt, A. Schmidt-Richberg, H. Handels
    A Variational Approach for Combined Segmentation and Estimation of Respiratory Motion in Temporal Image Sequences.
    IEEE International Conference on Computer Vision 2007, ICCV 2007, Rio de Janeiro, Brazil, CD-ROM-Proceedings, IEEE Catalog Number CFP07198-CDR (ISBN 978-1-4244-1631-8), 2007. 

Project Team:

Dipl.-Inf. Alexander Schmidt-Richberg
Dr. Jan Ehrhardt
Prof. Dr. Heinz Handels

 

IconIntegr4DSegmentierung.png
Created at July 12, 2010 - 2:55pm by Kulbe. Last modified at June 30, 2014 - 11:46am.

Languages

Address

Office
Susanne Petersen

Tel+49 451 3101 5601
Fax+49 451 3101 5604


Ratzeburger Allee 160
23538 Lübeck
Germany