Medizininformatik-Initiative Nachwuchsgruppe
"Integration und Analyse von multimodalen Sensorsignalen und klinischen Daten zur Diagnostik und Erforschung von neurologischen Bewegungsstörungen" (MoveGroup)

Die im Rahmen der Medizininformatik-Initiative geförderte Nachwuchsforschungsgruppe erforscht unter Leitung von Dr. Sebastian Fudickar als Teil des HIGHmed Konsortiums körpernahe und ambiente diagnostische Messsysteme zur kombinierten Erfassung motorischer, kognitiver und sensorischer Fähigkeiten. Deren Differenzierung ist bei der Bewertung der Funktionalität älterer Menschen von großer Bedeutung, um Kausalitäten zwischen kognitiven und motorischen Defiziten identifizieren zu können und so spezifische, Ressourcen-orientierte Therapieansätze zu ermöglichen.

Hierfür werden Messverfahren sowie Identifikations- und Fusionsalgorithmen zur Messung funktionaler Fähigkeiten mittels körpernaher und ambienter Sensorik für ein verbessertes Verständnis von normalem Altern bzw. anormalen individuellen Verläufen prototypisch untersucht und evaluiert. Darauf aufbauend werden Interventionen basierend auf individualisierter, physischer Interaktion mit den Nutzern zur Steigerung der motorischen und kognitiven Leistungsfähigkeit konzipiert.

Die Nachwuchsgruppe konzipiert, implementiert und evaluiert neue Verfahren der Integration und Analyse von multimodalen Sensorsignalen und klinischen Daten zur Diagnostik und Erforschung von Bewegungsstörungen. Dabei sind die wissenschaftliche Zielsetzung und die Forschungsarbeiten des Vorhabens entlang der folgenden drei Hauptziele strukturiert:

Ziel 1 – Sensorbasierte Erfassung, Modellierung von Körperbewegungen:
Durch den Aufbau einer multimodalen Sensorplattform zur detaillierten Erfassung von Körperbewegungen und Entwicklung einer algorithmischen Verarbeitungskette zur Sensordatenfusion und Merkmalsextraktion wird eine präzise, quantitative Analyse von Körperbewegungen ermöglicht.

Ziel 2 – HiGHmed-konforme Datenintegration und -nutzbarmachung:
Zur Integration und Nutzbarmachung von relevanten sensorbasierten Bewegungsmodellen und -profilen für Versorgungs- und Forschungsprozesse, wird ein Data Warehouse unter Wahrung datenschutzrechtlicher und ethischer Regularien und Implikationen entwickelt und an das Medizinische Datenintegrationszentrum UKSH MeDIC angeknüpft. 

Ziel 3 – Entscheidungsunterstützung und Erkenntnisgewinn mit KI-Methoden:
Zur Entwicklung einer KI-basierten Entscheidungsunterstützung für die med. Versorgung von Patienten mit Bewegungsstörungen werden auf Basis der erhobenen multimodalen Bewegungsdaten maschinelle Lernmodelle entwickelt.

Projektdetails

Abschlussarbeiten

Mit über 60 betreuten Abschlussarbeiten betreuen wir gerne und regelmäßig Abschlussarbeiten (Bachelor, Master), Praktika und ähnliche Formate. Falls Sie die folgenden exemplarischen Themen interessieren, buchen Sie sich hier direkt einen Termin für eine Onlinebesprechung. Wir stellen Ihnen die Themen dann genauer vor und erarbeiten in gegenseitiger Absprache auf Sie abgestimmte mögliche Aufgabenstellungen. Dabei passen wir natürlich auch den Schwierigkeitsgrad der Arbeit auf die Art ihres angestrebten Abschlusses an. 

Offene Themen:

Wir freuen uns auf Sie!

 

Studentische Hilfskrafttätigkeiten

Die Arbeitsgruppe bietet weiterhin die Möglichkeit, im Rahmen einer Anstellung als studentische Hilfskraft, einen Einblick in unsere Forschungsvorhaben zu erlangen und auf die Weise aktuelle Forschungsarbeiten zu unterstützen. Die Vergütung basiert auf stundenbasierte Arbeitsverträge (z.B. 20 Std. / Monat), die mit der Universität abgeschlossen und nach Unitarif bezahlt werden. Sprechen Sie uns bei Interesse gerne an.