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Abstract. Dense prediction using deep convolutional neural networks
(CNNs) has recently advanced the field of segmentation in computer
vision and medical imaging. In contrast to patch-based classification,
it requires only a single path through a deep network to segment every
voxel in an image. However, it is difficult to incorporate contextual infor-
mation without using contracting (pooling) layers, which would reduce
the spatial accuracy for thinner structures. Consequently, huge recep-
tive fields are required which might lead to disproportionate computa-
tional demand. Here, we propose to use binary sparse convolutions in
the first layer as a particularly effective approach to reduce complexity
while achieving high accuracy. The concept is inspired by the successful
BRIEF descriptors and complemented with 1×1 convolutions (cf. net-
work in network) to further reduce the number of trainable parameters.
Sparsity is in particular important for small datasets often found in med-
ical imaging. Our experimental validation demonstrates accuracies for
pancreas segmentation in CT that are comparable with state-of-the-art
deep learning approaches and registration based multi-atlas segmenta-
tion with label fusion. The whole network, which also includes a classic
CNN path to improve local details, can be trained in 10 minutes. Seg-
menting a new scan takes 3 seconds even without using a GPU.
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1 Introduction

The automatic segmentation of medical volumes relies on methods that are able
to delineate objects boundaries on a local detail level, but also to avoid over-
segmentation of similar neighbouring structures within the field-of-view. A ro-
bust method should therefore capture a large regional context. The segmentation
of the pancreas in computer tomography (CT) is very important for computer
assisted diagnosis of inflammation (pancreatitis) or cancer. However, this task
is challenging due to the highly variable shape, a relatively poor contrast and
similar neighouring abdominal structures.

In recent years, convolutional neural networks (CNN) have shown immense
progress in image recognition [1], by aggregating activations of object occur-
rences across the whole image using deep architectures and contracting pooling
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layers. Employing classic deep networks for segmentation using sliding patches
results in many redundant computations and long inference times. Dense predic-
tion (i.e. a parallel voxelwise segmentation) of whole images using the classical
contracting architecture was extended by so-called upconvolutional layers in [2],
which result in the loss of some detail information during spatial downsampling.
Additional links transferring higher resolution information have therefore been
proposed [3]. Fully-convolutional networks (FCN) have also been adapted for
medical image segmentation [4]. The ease of adapting existing deep network for
segmentation is inviting, however, may result in overly complex architectures
with many trainable weights that are potentially reliant on pre-training [5] and
increase the computational time for training and inference.

While fully-convolutional networks can reach impressive segmentation accu-
racy when designed properly and trained with enough data, it is interesting to
explore whether a completely new approach for including context into dense
prediction could be considered. A multiresolution deep network has been pro-
posed in [6] for brain lesion segmentation, which uses two parallel paths for
both high-resolution and low-resolution inputs. However, this approach still has
to perform a series of convolutions to increase the capture range of the recep-
tive field and might yield a higher correlation of weights across paths. In order
to segment smaller abdominal organs, in particular the pancreas that has poor
gray value contrast, we believe that it is of great importance to efficiently en-
code information about its surroundings within the CT scan. The use of sparse
long-range features [7], such as local binary patterns and BRIEF [8], has shown
great success within classic machine learning approaches. However, robustly and
discriminately representing vastly different anatomical shapes across subjects
is challenging and pancreas segmentation has not been successfully addressed
using random forests or ferns. We therefore conclude that while long-range com-
parisons are powerful in practice, learning their optimal combination within the
context of deep learning can further enhance their usefulness.

In [9], a new concept to aggregate context was introduced by using dilated
convolutions with the advantage that very wide kernels with fewer trainable
weights can be realised and has been used for MR segmentation in [10]. We pro-
pose to extend this idea to binary sparse convolutions and thereby model sparse
long-range contextual relations with DCNNs to obtain simple and efficient, yet
very powerful models for medical image segmentation. Our approach, which we
call BRIEFnet, starts with a sparse convolution filter with a huge receptive field,
so that each neuron in the following layer has only two non-zero input weights
(which are restricted to be ∈ ±1). In order to learn relations across these binary
comparisons, we succeed this layer by a 1 × 1 convolution, originally presented
as network in network [11]. We will show that this sparse sampling enables the
rapid training of expressive networks with very few parameters that outperform
many recent alternative ideas for dense prediction. Reducing model complex-
ity using binary weights is a new promising concept [12] that can substantially
reduce training and inference times. Similar to [6, 9], we design a network for
dense prediction without a need for contracting pooling layers. BRIEFnet can
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be seen as a complimentary solution to fully-convolutional architectures with
multi-resolution paths [4, 6] or holistically nested networks [5, 13]. The addi-
tional sparsity constraint in our method is in particular useful when few training
scans are available. We will show in our experiments that our network, which
also includes a classic CNN path for improved delineation of local details reaches
comparable performance to the much more complex DCNN technique of [5] and
the best multi-atlas registration with label fusion on a public abdominal CT
dataset [14].

2 Method

The input to the proposed network will be a region of interest around the pan-
creas. While our approach is fully convolutional and the output therefore in-
variant to translational offsets (except for boundary effects), a bounding box
initialisation helps to obtain roughly comparable organ sizes across scans and
reduces the computational complexity. Since this detection is not the focus of
this work, we use a manual box that is enlarged by about 300% (in volume)
around the pancreas. Several accurate algorithms exist for automatic bounding
box and organ localisation, e.g.[15, 16], which could be adapted for this task.
The BRIEFnet is designed to use a stack of 3D slices as input and output a
dense label prediction for every pixel within a stack of 2D slices. Thus a 3D
volume is generated by applying the network to all slices within the region of in-
terest. Finally, an edge-preserving smoothing of the predicted probability maps
is performed, which are then thresholded to yield binary segmentations.

The key idea behind BRIEFnet is to use binary sparse convolutions in order
to realise larger receptive fields while keeping the model complexity low. The
overview of our complete network is given in Fig. 1. We use 3D stacks of slices
of the CT scan within the bounding box as input to our framework. The images
are padded to keep the same dimensions for all layers using the lowest intensity
value (-1000 HU). In total, 2×1536 nonzero weights are determined, one ±1 pair
per kernel, by sampling the receptive field using a uniformly random distribution
(with a stride of three voxels). This random sparsity of connections in the first
layer is inspired by the irregular k-space sampling found in compressed sensing.
Note that it is important to increase the throughput of the central pixel as
discussed in [9], which is also similar in spirit to residual learning [1]. We increase
the probability of drawing the centre voxel within the receptive field so that every
third weight pair contains it. Subsequently, the 1536 channels (for each voxel in
the grid) are passed through tanh activation. To avoid a complete saturation of
the nonlinearity, we divide the inputs by a constant (here 100). Optimising binary
weights can be challenging [12] and would in this scenario lead to a very many
degrees of freedom, motivating the random selection at model construction.

Why is such a sparse sampling sufficient to gather all necessary image data?
The key lies in having the following 1×1 convolution that combines the output
of multiple weight pairs. This locally fully-connected layer (with shared weights
across all spatial position as in [11]) is able to find the optimal combination of
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Fig. 1: Architecture of BRIEFnet (the novel part is highlighted with red box). A huge
receptive field of 99×99×99 is realised by our sparse sampling (here of 1536 pixel pairs).
The weights of this first layer are not learned, restricted to +1 or -1 and followed by a
tanh activation. Importantly, a following 1×1 convolution combines information across
channels. To reduce computation time a stride of 3 is used for the first contextual
layer, requiring an up-convolution at the end. The additional local CNN path uses six
traditional small convolutions with 64 channels, which are merged with the context
information using a pointwise multiplication layer. Given an input 3D stack, a dense
probabilistic segmentation of the centre slice is obtained. Note that each ReLU is
preceded by batch-normalisation. In total there are only ≈1 million trainable weights.

sparse pixel pair activations and enables a meaningful dimensionality reduction.
When multiplying the trained weights of both layers, one notices patterns that
are similar to classic large convolution filters, but our framework removes redun-
dancy and achieves a much lower complexity than most other approaches. The
FCN network for semantic segmentation in [2] has over 100 million parameters
and the holistically nested network of [13] over ten million. We only require one
million, most of them for the 1536x256 matrix multiplication, which is particu-
larly efficient to compute. In order to compensate local errors (e.g. due to the
stride of 3 voxels), we additionally include a classic local CNN path for dense
prediction, which is combined with the contextual layers using a pointwise mul-
tiplication (as done in [17]). While the input to our network is 3D, all following
spatial convolutions are 2D (due to memory contraints), we therefore predict the
segmentation of each 2D slice individually and stack them together, as also done
for pancreas segmentation in [5]. The inference for all slices of one 3D image
takes only about 3 seconds on a CPU (<1 sec. on GPU) making our approach in
particular suitable for time-sensitive applications. A standard cross entropy loss
layer may be unsuitable for semantic segmentation when the object class occurs
less frequently. Following [5], we thus use a loss that weighs pancreas voxels more
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Fig. 2: Visual comparison of BRIEFnet to other recent methods for contextual aggre-
gation. Circles represent nonzero convolutional weights (+1 is white and -1 black). The
sparse layer of BRIEFnet is followed by a 1×1 kernel for cross-channel pooling as shown
in Fig. 1. Employing standard dilated convolutions results in a regular and non-sparse
sampling, while the multi-resolution scheme aggregates context information by succes-
sive application of classic convolution layers. The colour overlay of the final prediction
of all models clearly demonstrates the ability of BRIEFnet to accurately segment the
pancreas even in areas of low contrast. When using dilated convolutions neighbouring
structures may be included (such as the vena cava), similarly for the multi-resolution
framework, which cannot follow the narrow shape as accurately (see white arrows).

strongly. Since some slices contain no foreground at all, we adapt the weighting

factors in Equation (1) of [5] to β = |B|
|F |+|B| + ε and 1− β = |F |

|F |+|B| + ε, where ε

is set to 0.05. We implemented our method in MatConvNet [18] using a directed
acyclic graph structure to allow for joint end-to-end training of both paths.

3 Experiments and Results

We apply our new framework to pancreas segmentation in CT, because it presents
a challenging scenario where capturing the contextual information is of great
value. We use the 30 subjects of the training data of the MICCAI 2015 challenge
on multi-atlas segmentation of the abdomen [14]3 to evaluate and compare our
approach. In addition, we include 18 scans of the VISCERAL dataset [19] only
for the learning stage. We perform six-fold cross-validation with 43 scans for
training and five scans for test (we do not evaluate accuracy on the VISCERAL
data). All weights, expect for the binary sparse convolution layer as discussed be-
fore, are initialised using the Xavier method. We use a mini-batch size of six and
stochastic gradient descent with momentum of 0.9 and logarithmically decaying
learning rates from 0.1 to 0.01 over seven epochs (≈1400 iterations). To enable
a reproduction of our results and further research, our processing pipeline and
code are publicly available at https://github.com/mattiaspaul/BRIEFnet.

3 https://www.synapse.org/#!Synapse:syn3193805/wiki/89480
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Segmentation Results and Model Comparison: We compare the BRIEF-
net to two alternative architectures for context aggregation: dilated convolutions
as recently proposed in computer vision by [9] and a multi-resolution dual path
network similar to [6]. All architectures are designed to have similarly large
receptive fields when considering all layers and a comparable number of parame-
ters. The dilated convolution network has a convolution kernel of size 17×17×17
with a dilation of six voxels (in all 3 dimensions) and 256 channels in the first
layer, but is otherwise identical to BRIEFnet. A multi-resolution dual path net-
work is designed with a 9×9×33 convolution filter (with stride 3) followed by six
5×5 convolutions with 128 channels each. All architectures share the same local
CNN path. Visual examples of the predicted organ probabilities together with a
schematic explanation of the structural network differences are shown in Fig. 2.

We use the same 3D images for all models, obtained using the enlarged
bounding boxes, which contain on average 2-3% pancreas voxels. For the con-
textual path in each network, the images are smoothed by a Gaussian kernel with
σ = 1.5 voxels. The intensity range is mapped from the interval of (−160, 240)
HU to (−1,+1) as in [5]. An edge-preserving smoothing of the foreground prob-
abilities as proposed in [20] is performed as only post-processing step. A global
binary segmentation threshold that represents the best tradeoff across all scans
is selected for each tested model separately for a fair comparison. We obtained
Dice scores of 64.5% for our proposed BRIEFnet, 59.6% for dilated convolutions
and 47.6% for the multi-resolution network. Demonstrating a clear advantage of
our new concept. When removing the local path the accuracy drops by ≈ 5.6%.

While the use of manual bounding boxes might yield overly optimistic results,
it provides a good comparison among the tested models. In many other areas,
e.g. for face landmark detection and segmentation, specific bounding boxes are
commonly shared with public datasets to exclude the dependency of the following
steps on this initialisation. Automatic bounding box estimation is nevertheless
of great importance for future work. Encouraging progress has recently been
made in computer vision. Another approach to further boost accuracy is to
predict organ probabilities for multiple region proposals and fuse the results [5].
Since no data augmentation was performed in our experiments, we can conclude
that our compact model together with the sparsity constraint generalises well
even for small datasets and further improvements are expected for larger scale
experiments.

Comparison to State-of-the-Art: In general Dice scores for pancreas seg-
mentation are relatively low. In [14] overlap scores of 40% and 49% have been
reported for two different multi-atlas techniques. The standardised nonlinear reg-
istration, which uses NiftyReg (the parameterisation of which is described in [21])
in a leave-one-out validation, followed by a majority vote achieves a Dice score of
only 26%, highlighting the difficulty of this dataset. Employing advanced label
fusion can increase the accuracy to 64%. Holistically nested networks together
with superpixel based region proposals and random forest spatial aggregation as
proposed in [5] (trained on a much larger dataset of 82 cancer patients) achieved
impressive 62% (or 66% when employing the fusion of multiple models).
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Computational complexity: One of the main advantages of our framework
is its low model complexity. The currently employed deep segmentation models
that are originally based on large scale image classification require training times
of several hours (to days) [2]. Our network has only one million free parameters
and we found that by employing batch normalisation the training converges after
just seven epochs, yielding a training time of around ten minutes on a GTX 950.
Even more compelling is the inference time of three seconds on a CPU for the
segmentation of a new 3D image, since most deep networks employed for medical
scans require several minutes on a GPU [5, 6]. This opens up new possibilities for
using DCNNs for time-sensitive applications such as image-guided interventions.

4 Discussion and Conclusion

We have presented a new deep convolutional architecture called BRIEFnet that
enables a very efficient modelling of contextual information for semantic segmen-
tation. It realises a very large receptive field by using binary sparse convolutions
with only two nonzero weights each - similar to BRIEF features [8] - followed by
a nonlinear activation. In addition, a subsequent 1×1 convolution layer enables a
suitable combination of these elementary feature activations and also serves as a
dimensionality reduction. In contrast to fully convolutional networks (FCN) [2,
3] no contracting pathway is required, reducing the number of trainable weights
to one million (100× less than FCN) and realising training times of only ten
minutes. The segmentation of a new image is highly efficient due to the dense
prediction of whole image slices and the large matrix multiplications (in partic-
ular in the 1×1 convolution layer) leading to test times of three seconds on a
CPU. Exemplary results for CT pancreas segmentation demonstrate high accu-
racies, comparable to more complex models, and with substantial improvements
over alternative ways of incorporating nonlocal information into semantic seg-
mentation. Making no domain specific assumptions, our model would be directly
applicable to other anatomical regions. In future work, it would be of interest
to include data augmentation and/or model fusion to further exploit the fast
training and inference time of BRIEFnet and enhance its generalisability e.g.
by learning offsets [22]. So far only the first layer captures true 3D information,
therefore further improvements could be gained by employing only 3D convolu-
tions throughout the network.

Acknowledgements: We thank Maurice Sambale, whose work during his B.Sc.
thesis gave inspiration to some of the new ideas in this paper.
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